Search results for "real-time implementation"
showing 3 items of 3 documents
Adaptive high-gain extended kalman filter and applications
2010
The work concerns the ``observability problem” --- the reconstruction of a dynamic process's full state from a partially measured state--- for nonlinear dynamic systems. The Extended Kalman Filter (EKF) is a widely-used observer for such nonlinear systems. However it suffers from a lack of theoretical justifications and displays poor performance when the estimated state is far from the real state, e.g. due to large perturbations, a poor initial state estimate, etc… We propose a solution to these problems, the Adaptive High-Gain (EKF). Observability theory reveals the existence of special representations characterizing nonlinear systems having the observability property. Such representations…
Le filtre de Kalman étendu à grand-gain adaptatif et ses applications
2010
The work concerns the “observability problem”—the reconstruction of a dynamic process’s full state from a partially measured state— for nonlinear dynamic systems. The Extended Kalman Filter (EKF) is a widely-used observer for such nonlinear systems. However it suffers from a lack of theoretical justifications and displays poor performance when the estimated state is far from the real state, e.g. due to large perturbations, a poor initial state estimate, etc. . . We propose a solution to these problems, the Adaptive High-Gain (EKF). Observability theory reveals the existence of special representations characterizing nonlinear systems having the observability property. Such representations ar…
Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation
2020
The epileptogenic focus is a brain area that may be surgically removed to control of epileptic seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given the difficulty of determining the localization of this brain region responsible of the initial seizure discharge, many works have proposed machine learning methods for the automatic classification of focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during the processing of the huge amount of information collected during several days of patient monitori…